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a b s t r a c t

A problem which arises when estimating the attainability domains of linear dynamical systems by ellip-
soids is investigated in a short time interval in the case when the initial position of the system in phase
space is known precisely for some at least coordinates. A method is proposed which allows one to avoid
problems associated with the degeneracy of the right-hand sides of the differential equations of the locally
optimal ellipsoidal approximation. The mathematical meaning of these equations is made more precise
in the case of the minimization of the phase volume. An example is given.
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1. Introduction

Consider a dynamical system of the form

(1.1)

Here, � (t) is uncontrolled disturbance that is limited in magnitude in a known manner. We will assume that all the time functions
considered are such that solutions of the differential equations, in which these functions are used, exist and all cases of the imposition of
additional constraints will be specified separately. Since nothing more is known about the disturbance �(t), it is appropriate to use guaran-
teed estimation in order to obtain information about the function x(t). The construction of domains of attainability is rather complicated
in the multidimensional case, un view of which, we employ the well known method of estimates of these domains using ellipsoids (see
Refs. 1–3).

(1.2)

where � is the centre and D is the matrix of the ellipsoid. An ellipsoid (1.2) with a matrix Q(t) can then be found which contains the entire
set of possible values of x(t) and is governed by the equations

(1.3)

Here K(t) is the matrix of the ellipsoid (1.2) that limits the disturbance and the ellipsoid with the matrix Q0 limits the set of possible initial
values X0. Without loss of generality, it can be assumed that the centre of the ellipsoid K is located at the origin of the system of coordinates.
The motion of the centre of the ellipsoid Q is then described by the equation

(1.4)

where a0 is the centre of the ellipsoid Q0.
The scalar function q(t) is subject to two conditions. Firstly, the differential equation (1.3) must have a solution and, secondly, q = q(t) > 0

when t > t0. Existing methods for choosing of the function q(t) can be divided into two groups.4 In both cases, a functional L = L(Q), which is
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smooth and monotonically dependent on Q, is introduced. In other words, it is required that the gradient ∂L/∂Q should exist and it should
be a positive semidefinite. The volume L(Q) = VolE(Q) and the trace L(Q) = TrQ can serve as examples of functionals. Then,

(1.5)

where, in the locally optimal case,

(1.6)

and, in the globally optimal case,

(1.7)

Version (1.6) means that the rate of growth of the functional is minimized at each instant between t0 and the instant T when the process is
terminated. Version (1.7) ensures a minimum value of the functional at the instant T. Note that the two varerions are identical when t0 = T.

In engineering, the linear approximation (1.1) is permissible, as a rule, either in a fairly short time interval or when investigating of the
deviation of the actual trajectory from the basic trajectory for comparatively small magnitudes of the vector x. Consequently, the possibility
of a rapid solution of the problem of the estimating of the phase state for small value of T and small eigenvalues of the matrix Q0 is of
paramount interest. Version (1.6) is then preferable since, in the general case, the solution of the locally optimal problem is considerably
less tedious compared with the solution of the globally optimal problem since the latter is a boundary value problem. Moreover, the
solutions of both problems are similar when t0 and T are close. On the other hand, if the matrix Q0 is singular, then the calculation of Q(t)
is made more difficult in the case of (1.6), since q can vanish at the instant t0. The position becomes even more complicated if the matrix G
is also singular. In particular, the latter case arises naturally in the treatment of mechanical problems in which a force acting on a system
serves as an uncertain factor. Then, the components of the matrix G, occurring in the equations which are solved for the derivatives of the
coordinates, can be zero, unlike the components occurring in the equations that are solved for the derivatives of the momenta.

2. Formulation of the problem

We will show that the ability to solve the locally optimal problem in the case of a null matrix Q0 can prove to be useful even in the
case when the set of initial conditions is non-degenerate. We take any point belonging to the set X0 and assume that, at the instant t0, the
system is located precisely at this point. An ellipsoid with the matrix Q*(t), which is obtained as the solution of Eqs. (1.3), (1.5) and (1.6),
with the condition Q0 = 0, will then be the locally optimal estimate for x(t). The matrix that has been found will be the same for any other
initial point. Since the ellipsoid with the matrix Q0 restricts the set X0, the totality of the centres of all of the ellipsoids obtained in this a
way will itself be an ellipsoid QA(t) with a centre which is subject to relation (1.4). The matrix QA(t) can be found from the equation

(2.1)

In other words, the required estimate of the vector x(t) is the union of the ellipsoid the parameters of which are obtained from Eqs. (1.4)
and (2.1), with the set of ellipsoids that have the common matrix Q*(t) and centres at each point of the ellipsoid QA(t). According to the
definition of the sum of sets, this set is the sum of two ellipsoids: an ellipsoid with a matrix QA(t) and centre a(t) and an ellipsoid with a
matrix Q*(t) and centre at the origin of the system of coordinates. This sum can be approximated by a single ellipsoid using well known
methods.

Consequently, if it is necessary to solve the problem of the approximating of the phase state of the same dynamical system many times
for different initial conditions, it is sufficient to solve a non-linear differential equation of the type (1.3) once for null initial conditions.
The linear Eq. (2.1) has to be solved for each version of the other initial conditions and the resulting ellipsoid has to be combined with the
solution of Eq. (1.3). Note that the final operation in approximating of the sum may turn out to be optional in an actual application since
the set that represents the sum of the two ellipsoids can be used directly.

The proposed method is insensitive to the type of singularity of the initial set, since the right-hand side of Eq. (2.1) does not have
singularities in the case of any singularity of the initial matrix. This is important since it has been noted5 regarding Eq. (1.3), as applied to
the locally optimal minimization of the logarithm of the volume, that “a solution of the Cauchy problem does not generally exist for it for
the majority of singular initial conditions”

It follows from what has been said above that it is necessary to be able to solve the following Cauchy problem

(2.2)

for small t, choosing q(t) > 0, when t > 0, by the best method in a certain sense.

3. The “Universal” asymptotics relation

We will now construct an approximate solution of Eq. (2.2) in the neighbourhood of the point t = 0 in the form of series in the small
parameter t. Suppose representations

exist, where A0,A1,G0,G1,G2 are known constant matrices.
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We shall seek the coefficients of the expansion for Q(t)

(3.1)

while simultaneously prescribing the coefficients in the expansion of the function

We substitute series (3.1) into relation (2.2), transfer all the terms to the left-hand side of the equation, and find the coefficients of
the different powers of t. From the condition that the coefficient of t0 is equal to zero, we obtain Q1 = q0G0. Consequently, it is convenient
to choose q0 = 0. Equating the coefficient of t1 to zero, we obtain Q2 = q1/(2 − q−1

1 )G0. We now choose Q1 > 0 such that the coefficient
of G0 has the smallest possible positive magnitude. Then, q1 = 1 and Q2 = G0. It can be shown that, when q0 = 0 and q1 = 1, the matrix
Q3 = (A0G0 + G0AT

0 + G1)/2. It is independent of terms in the series for the function q(t) of the order of t2. We obtain

Suppose q2 = 0. The relation for Q(t) acquires the form

(3.2)

No functional for searching for the optimal form of q(t) was used in deriving of this relation. At the same time, this result possesses a
number of useful properties.

1◦. The expression

(3.3)

was used6 for the case of a positive-definite matrix G(t) when searching for the solution that is locally optimal with respect to the logarithm
of the volume. It was shown that the same relation under the same conditions holds for an ellipsoid that is guaranteed to be contained in
the attainable set. Consequently, in the case of a positive-definite matrix G(t), the attainable set is an ellipsoid with matrix (3.3) apart from
terms of the order of t4.

2◦. It follows from known results4 that, when constructing of globally optimal ellipsoids for any criterion

(3.4)

It follows from relations (3.4) that, if the series ϕ(t) = ϕ(0) + tϕ̇(+) + O(t2) exists and ϕ̇(0) �= 0, then, when Q(0) = 0, we have ϕ(0) = 0. Then
q(t) = t + O(r2), and we again obtain expression (3.3).

3◦. If we take q(t) = t, then the change of variables Q(t) = tZ(t) in problem (2.2) leads to the problem

(3.5)

which is linear in Z.

4◦. In certain cases involving the combined use of the methods of guaranteed and stochastic estimation, it has been shown7 that relation
(3.2) enables one to improve the estimate of the phase state of a dynamical system.

So, the proposed asymptotic relation can be used in a wide class of engineering problems in which the choice of the specific criterion for
the optimality of the estimate is not clear from the physical meaning of the problem or the use of this criterion is not absolutely necessary.

On the other hand, the choice q(t) = t does not, of course, make it possible to reach an extremum in the majority of cases. We will now
consider a simple example.

4. The motion of a point mass along a line under the action of an uncertain force

In reduced variables, the corresponding equations for the phase coordinates have the form

(4.1)

Problem (2.2) then takes the form

(4.2)



A.M. Shmatkov / Journal of Applied Mathematics and Mechanics 72 (2008) 144–151 147

We shall seek the solution which is locally optimal with respect to the area of the ellipse Vol E(Q ) = �
√

det Q in the neighbourhood of the
point t = 0.

We use the same method as in the preceding section: we put

If q0 �= 0, then det Q = q2
0t4/12 + O(t5). Consequently, it is necessary to choose q0 = 0. We then have

(4.3)

Since minimization of the rate of growth of the area of the ellipse is equivalent to minimization of the rate of increase of detQ, it suffices
to find the minimum with respect to q1 of the first term of the expansion of detQ, that is,

It can be shown that the required value of q1 is one of the roots of the equation

We obtain

(4.4)

Application of the results of the preceding section gives

(4.5)

The area of the ellipse (4.5) exceeds the area of the ellipse (4.4) by less than 0.8%. Consequently, use of the equality q(t) = t for small
t in the problem solved does not lead to significant errors. Note that formulae (4.5) were derived8 for the case of the local optimization
criterion L(Q) = Q22.

The results presented do enable one misunderstanding associated with this problem to be cleared up. A solution of problem (4.1), (4.2)
was obtained3 having the form

(4.6)

The area of the corresponding ellipse is equal to S ≈ 1.249t3 while the area in the case of (4.4) is equal to S ≈ 0.9001t3. We will now explain
the reason for this discrepancy.

5. Equations of ellipsoids that are locally optimal with respect to the logarithm of the volume

Consider the matrix differential equation

(5.1)
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Fig. 1.

It is well known (see Ref. 9, for example) that the Jacobian identity

where c is a certain constant, holds for system (5.1). Hence we obtain by differentiation,

(5.2)

In the special case, when W(t) ≡ X−1(t)Ẋ(t), relation (5.2) becomes3

(5.3)

We multiply both sides of the first equation of (1.3) by Q−1 and obtain

(5.4)

where I is the unit matrix such that TrI = n. The property Tr(MN) = Tr(NM), which is true for any square matrices M and N, has been used in
deriving Eq. (5.4) (see Ref. 3). We will now find the minimum of the right-hand side of equality (5.4) for to all q > 0. We obtain

(5.5)

which is identical to the well-known result3. The difference lies in the fact that earlier3 the discussion concerned ellipsoids that were
locally optimal with respect to volume. However, by virtue of the equality (3.3), formula (5.5) ensures the condition (d/dt)indet Q → min
rather than (d/dt)detQ → min.

Thus, the ellipsoids obtained earlier3 are locally optimal with respect to the logarithm of the volume. Solution (4.6) is actually optimal
in this sense as is the other solution that ensures a rate of change of the logarithm of the determinant equal to 6/t. In particular, solutions
(4.4) and (4.5) have precisely this rate.

For completeness, the ellipse obtained earlier,4 which is globally optimal with respect to its area, should be mentioned. It has the
parameters

(5.6)

where � ≈ 0.56215. Its area S* ≈ 0.8587t3 is less than the area of the locally optimal ellipse (4.4) by approximately 5%. The exact attainable
set, obtained earlier,3 has an area of (2/3)t3.

All the approximations indicated above are shown in the self-similar variables �1 = x1/t2 and �2 = x2/t in Fig. 1 (see Ref. 3). By virtue of
the symmetry, only the upper half-plane �2 ≥ 0 is shown. The ellipse (5.6), which is globally optimal with respect to area, is denoted by the
number 1, the ellipse (4.6), which is locally optimal with respect to the logarithm of the area, is denoted by 2 and the ellipse (4.5), which
corresponds to the asymptotic relation proposed in this paper is denoted by 3. The solution (4.4), which is locally optimal with respect to
area, is shown by the dashed curve. Unlike all the remaining ellipses, it is extremal in the above-mentioned sense only for small values of
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Fig. 2.

t. The approximated attainable set

has a boundary consisting of arcs of two parabolae and is denoted by the number 4. It is interesting that not a single one of the four
ellipses completely contains another ellipse but each, as they must, contains the attainable set. Its boundary includes a corner point with
the coordinates (0.5, 1), the neighbourhoods of which are shown on a large scale in Fig. 2. It can be seen that only the ellipse (4.5) passes
through the above-mentioned point. None of the remaining approximations have common points with the attainable set.

6. Example

We will now consider the motion of two masses with coordinates x1 and x2, connected by a spring of stiffness k along a straight line
under the action of the limited disturbance F1 and F2, where the first of these perturbations acts on the first mass and the second on the
second mass respectively. The equations of this mechanical system have the form

(6.1)

After relations (6.1) have been reduced to normal form, the coordinate and velocity of the first mass will correspond to the first and second
variables in phase space, and the coordinate and velocity of the second mass will correspond to the third and fourth variables. In the
notation of (1.1), we obtain

Suppose that, at any instant, the magnitudes of the perturbations satisfy the inequality F2
1 /f 2

1 + F2
2 /f 2

2 ≤ 1, where f1 and f2 are known
constants. Then, in the notation of (1.3), we can write

We will assume that the following initial conditions are given at the instant t = 0

In other words, the coordinate and velocity of the first mass are known absolutely exactly at the initial instant, and the coordinate and
velocity of the second mass are known with a certain limited accuracy.

In this example, according to Eq. (1.4), the vector a(t) of the centre of the estimate is identically equal to zero and it is of no interest in
the subsequent discussion.

The solution of Eq. (2.1) in the general case has the form (see Ref. 3, for example)

(6.2)

In the case considered here, A is independent of time. Then, the fundamental matrix V(t) = exp(At).
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Fig. 3.

The solution of Eq. (2.2) when q(t) = t reduces to the solution of problem (3.5) and, in the general case, it can be written in the form of a
quadrature

(6.3)

The required approximation is the sum of ellipsoids with matrices QA(t) and Q(t), which are found using formulae (6.2) and (6.3)
respectively. Both matrices were found in analytical form but cannot be presented in full here because of their length. As an example, we
will confine ourselves to the formula

From the domain obtained, we separate out that part which bounds the set of possible values of the coordinate and velocity of the
second mass at instants when the coordinate and velocity of the first mass are equal to zero. Several sections, labelled with the values of
the corresponding instants, are shown in Fig. 3, where all quantities are presented in SI units. Calculations were carried out for the following
values of the parameters

The algorithm used can be developed to obtain approximations in the form of the sum of three or more ellipsoids. We will now consider
a certain fixed instant � > 0. It can be considered as a new origin, and the ellipsoid Q(t), which corresponds to the solution of the problem
determined from Eq. (2.2), can be replaced by two ellipsoids. The first will correspond to (2.1) with an initial value equal to Q(t). The second
will be the solution of Eq. (2.2), subject to the condition of a time shift by �. As a result, an estimate will be obtained which represents
the sum of these two ellipsoids with the ellipsoid QA(t). Similarly, by specifying additional intermediate instants, it is possible to obtain
an approximation to any number of ellipsoids specified in advance. It can be used both directly as well as after approximating the unique
ellipsoid using well-known formulae.10
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